Nom du corpus

Corpus Systématique Animale

Titre du document

Genetic structure of dictyoceratid sponge populations on the western Coral Sea reefs

Lien vers le document
Springer (journals)
Langue(s) du document
Type de document
Nom du fichier dans la ressource
  • J. A. H. Benzie 1
  • C. Sandusky 2
  • C. R. Wilkinson 1
  • 1) Australian Institute of Marine Science, PMB No. 3, 4810, Townsville, Queensland, Australia
  • 2) Long Island University, 239 Montauk Highway, 11968, Southampton, New York, USA

Allozyme variation at six polymorphic loci was examined in foliose dictyoceratid sponges from isolated reefs in the western Coral Sea. Four major genetic groups corresponding to the species Phyllospongia lamellosa, P. alcicornis, Carterospongia flabellifera and Collospongia auris were examined. A further two rare morphotypes from individual reefs formed genetic outliers to the P. lamellosa group, and may represent further taxa related to P. lamellosa. Gene frequencies in individual reef populations were largely in Hardy-Weinberg equilibrium, suggesting that random mating occurred in local populations of all four common species. Genetic variability was high and observed heterozygosities within populations ranged from 0.13 to 0.40. All four taxa showed significant genetic differentiation among populations (F ST=0.05 to 0.36). Genetic distances (Nei's D) among populations within species ranged from 0 to 0.723 and increased with increasing geographical separation. There was evidence that genetic differentiation between populations to the north and to the south of the southern limit of the South Equatorial Current (SEC) divergence was greater than expected on the basis of their geographical separation. The SEC divergence may form a partial barrier to gene flow among populations of these ecologically important sponges on the submerged Queensland Plateau. Levels of migration among populations of three of the species was less than those required to prevent divergence of the populations through genetic drift (Nm<1). Restricted migration among populations may provide a mechanism to explain the occurrence of highly divergent populations of dictyoceratid sponges whose specific identity is not clear, and may allow them additionally to develop partial reproduction isolation from other populations.

Catégories Science-Metrix
  • 1 - natural sciences
  • 2 - biology
  • 3 - marine biology & hydrobiology
Catégories INIST
  • 1 - sciences appliquees, technologies et medecines
  • 2 - sciences biologiques et medicales
  • 3 - sciences biologiques fondamentales et appliquees. psychologie
Catégories Scopus
  • 1 - Physical Sciences ; 2 - Environmental Science ; 3 - Ecology
  • 1 - Life Sciences ; 2 - Agricultural and Biological Sciences ; 3 - Aquatic Science
  • 1 - Life Sciences ; 2 - Agricultural and Biological Sciences ; 3 - Ecology, Evolution, Behavior and Systematics
Catégories WoS
  • 1 - science ; 2 - marine & freshwater biology
Identifiant ISTEX

Marine Biology

Année de publication
Présence de XML structuré
Version PDF
Score qualité du texte
  • Eponges
Type de publication
Powered by Lodex 9.3.8