Nom du corpus

Corpus Systématique Animale

Titre du document

Amphibious fish: why do they leave water?

Lien vers le document
Springer (journals)
Langue(s) du document
Type de document
Nom du fichier dans la ressource
  • M. D. J. Sayer 1
  • J. Davenport 2
  • 1) Department of Life Science, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
  • 2) School of Ocean Sciences, Marine Science Laboratories, University College of North Wales, Menai Bridge, LL59 5EH, Anglesey, Gwynedd, United Kingdom

Amphibious behaviour in fish has evolved separately many times since the first amphibious fishes, the rhipidistian crossopterygians, ventured onto land about 350 million years ago. This behaviour has resulted in the colonization and eventual domination by vertebrates of the terrestrial habitat. It is generally proposed that aquatic hypoxia, owing to metabolic oxygen consumption and organic decay, was the most important selective force in the evolution of air-breathing vertebrates (e.g. Randall et al., 1981). Modern amphibious fish species give an insight into the reasons for leaving and eventually abandoning the aquatic habitat. Amphibious fishes today leave the water for a variety of reasons associated with degradation of their aquatic habitat, or biotic factors within it. The possible causal factors which may elicit an emergence response are summarized in Fig. 1(a) and (b). Amphibious fish inhabiting closed systems, as typified by freshwater or intertidal pools, may leave water for any of the reasons detailed in Fig. 1(a). The relative importance of any one stimulus is likely to vary between different species. However, it is possible that in closed systems, adverse fluctuations in physico-chemical parameters will have a more important effect in eliciting amphibious behaviour than will biotic factors. In open systems, such as coastal waters or large freshwater bodies, effectively two routes of escape from adverse aquatic conditions are available to amphibious fish. They may move onto land, or alternatively they may move underwater to find better conditions. In such a system, where physico-chemical parameters remain relatively constant, abiotic factors are unlikely to have a significant influence on amphibious behaviour. The dominant stimulus in open systems is possibly the three-way interaction between predation, competition, and short-or long-term food availability (Fig. 1(b)). It is unlikely that any one of the factors discussed in this review will act alone in causing amphibious behaviour, and in this respect the available literature on fish leaving water is lacking. Much of it is fragmentary and partly anecdotal, and the limited amount of experimental work tends to concentrate on individual causal factors. There is evidently scope for detailed examination of emersion in a number of amphibious fishes, testing a matrix of environmental and biotic stimuli, in an attempt to determine in more detail the reasons for such behaviour.

Catégories Science-Metrix
  • 1 - applied sciences
  • 2 - agriculture, fisheries & forestry
  • 3 - fisheries
Catégories INIST
  • 1 - sciences appliquees, technologies et medecines
  • 2 - sciences biologiques et medicales
  • 3 - sciences biologiques fondamentales et appliquees. psychologie
Catégories Scopus
  • 1 - Life Sciences ; 2 - Agricultural and Biological Sciences ; 3 - Aquatic Science
Catégories WoS
  • 1 - science ; 2 - marine & freshwater biology
  • 1 - science ; 2 - fisheries
Identifiant ISTEX

Reviews in Fish Biology and Fisheries

Année de publication
Présence de XML structuré
Version PDF
Score qualité du texte
  • Poissons
Type de publication
Powered by Lodex 9.3.8