Nom du corpus

Corpus Systématique Animale

Titre du document

Detection and avoidance of hypoxic water by juvenile Callinectes sapidus and C. similis

Lien vers le document
Springer (journals)
Langue(s) du document
Type de document
Nom du fichier dans la ressource
  • T. Das 1
  • W. B. Stickle 1
  • 1) Department of Zoology and Physiology, Louisiana State University, 70803, Baton Rouge, Louisiana, USA

Detection and avoidance of hypoxic water by juvenile blue crabs, Callinectes sapidus Rathbun and C. similis Williams were observed under laboratory conditions. Hypoxia avoidance was quantified within an avoidance chamber using response time (time in minutes before a crab's initial entry into the normoxic side of the avoidance chamber after the introduction of hypoxic water into the chamber), total time (amount of time spent by each crab at the hypoxic end of the chamber during the final 50 min of each 60 min treatment), activity (total distance travelled by a crab during a treatment), percent avoidance and preferred oxygen tension as indices of measurement. The mean preferred oxygen tension for C. sapidus was 112 torr oxygen (range = 98 to 125 torr) and for C. similis was 108 torr oxygen (range = 82 to 121 torr). Both species were able to detect hypoxic water and remain at an optimum oxygen tension. When percent avoidance, response time and total time were used as measures of avoidance, C. similis was found to detect and avoid hypoxic water at 0, 25 and 50 torr oxygen tension but not at any higher levels of hypoxia. C. sapidus, on the other hand, did not initiate any significant avoidance behavior even when the water was completely anoxic. Both species of crabs were more active at the higher oxygen tensions than in the more hypoxic levels. Behavioral responses associated with short-term hypoxic exposure included increased activity with the introduction of hypoxic water into the chamber, frequent movement of the eye-stalk, avoidance of hypoxic water by slowly crawling out of the hypoxic zone, restless and erratic movements, and rapid movements of the crabs' antennae. We conclude that C. similis can better detect and avoid hypoxia than C. sapidus.

Catégories Science-Metrix
  • 1 - natural sciences
  • 2 - biology
  • 3 - marine biology & hydrobiology
Catégories INIST
  • 1 - sciences appliquees, technologies et medecines
  • 2 - sciences biologiques et medicales
  • 3 - sciences biologiques fondamentales et appliquees. psychologie
  • 4 - psychologie. psychophysiologie
Catégories Scopus
  • 1 - Physical Sciences ; 2 - Environmental Science ; 3 - Ecology
  • 1 - Life Sciences ; 2 - Agricultural and Biological Sciences ; 3 - Aquatic Science
  • 1 - Life Sciences ; 2 - Agricultural and Biological Sciences ; 3 - Ecology, Evolution, Behavior and Systematics
Catégories WoS
  • 1 - science ; 2 - marine & freshwater biology
Identifiant ISTEX

Marine Biology

Année de publication
Présence de XML structuré
Version PDF
Score qualité du texte
  • Arthropodes
Type de publication
Powered by Lodex 9.3.8