Nom du corpus

Corpus Systématique Animale

Titre du document

A bio-inspired shape memory alloy composite (BISMAC) actuator

Lien vers le document
Éditeur
IOP
Langue(s) du document
Anglais
Type de document
Research-article
Nom du fichier dans la ressource
Eponges_v2b_0085
Auteur(s)
  • A A Villanueva 1
  • K B Joshi 1
  • J B Blottman 2
  • S Priya 1,3
Affiliation(s)
  • 1) CIMSS, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
  • 2) Naval Undersea Warfare Center, Newport, RI 02481-1708, USA
  • 3) Author to whom any correspondence should be addressed
Résumé

A beam-shape composite actuator using shape memory alloy (SMA) wires as the activecomponent, termed a Bio-Inspired Shape Memory Alloy Composite(BISMAC), wasdesigned to provide a large deformation profile. The BISMAC design was inspired bycontraction of a jellyfish bell, utilizing the rowing mechanism for locomotion.Characterization of maximum deformation in underwater conditions was performed fordifferent actuator configurations to analyze the effect of different design parameters,including silicone thickness, flexible steel thickness and distance between the SMA andflexible steel. A constant cross-section (CC)-BISMAC of length 16cm was found to achievedeformation with a radius of curvature of 3.5cm. Under equilibrium conditions, theCC-BISMAC was found to achieve 80 of maximum deformation, consuming 7.9J/cycle drivenat 16.2V/0.98A and a frequency of 0.25Hz. A detailed analytical model was developed using the transfermatrix method and a 1D finite beam element (FE) model to simulate the behavior of theBISMAC incorporating gravity, buoyancy and SMA parameters. The FE and transfermatrix models had a maximum deformation error norm of 1.505 and 1.917cm incomparison with experimentally observed beam deformation in the CC-BISMAC. Themean curvatures predicted by the FE and transfer matrix methods were 0.292cm1 and0.295cm1 compared to a mean experimental curvature of 0.294cm1, a percentageerror of 5.4 and 2.77, respectively. Using the developed analytical model, an actuator design wasfabricated mimicking the maximum deformation profile of jellyfish of the species Aureliaaurita (AA). The designed AA-BISMAC achieved a maximum curvature of 0.428cm1 as comparedto 0.438cm1 for A.aurita with an average square root error of 0.043cm1, 10.2 of maximum A. aurita curvature.

Catégories Science-Metrix
  • 1 - applied sciences
  • 2 - enabling & strategic technologies
  • 3 - materials
Catégories INIST
  • 1 - sciences appliquees, technologies et medecines
  • 2 - sciences biologiques et medicales
  • 3 - sciences biologiques fondamentales et appliquees. psychologie
Catégories Scopus
  • 1 - Physical Sciences ; 2 - Engineering ; 3 - Electrical and Electronic Engineering
  • 1 - Physical Sciences ; 2 - Engineering ; 3 - Mechanics of Materials
  • 1 - Physical Sciences ; 2 - Physics and Astronomy ; 3 - Condensed Matter Physics
  • 1 - Physical Sciences ; 2 - Materials Science ; 3 - General Materials Science
  • 1 - Physical Sciences ; 2 - Physics and Astronomy ; 3 - Atomic and Molecular Physics, and Optics
  • 1 - Physical Sciences ; 2 - Engineering ; 3 - Civil and Structural Engineering
  • 1 - Physical Sciences ; 2 - Computer Science ; 3 - Signal Processing
Catégories WoS
  • 1 - science ; 2 - materials science, multidisciplinary ; 2 - instruments & instrumentation
Identifiant ISTEX
D7D40C6185A005587FD132AF44B66B1F8C2D0E19
Revue

Smart Materials and Structures

Année de publication
2010
Présence de XML structuré
Oui
Version PDF
1.4
Score qualité du texte
9.928
Sous-corpus
  • Eponges
Type de publication
Journal
ark:/67375/0T8-SDWW0D8K-8
Powered by Lodex 9.3.8